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= We propose a feasible machine design
\/— \/ [ ] ® [ J [ ] o o [ J m
“=1[| which is driven by scientific requirements

- Repetition rate 10 kHz
» Synchronization 10's fs
* Variable polarization
* Broad photon range ~ 0.02-12 keV
- Hard x-rays
*  Tunable 1-12 keV
*  Pulse duration < 50 fs above 3 keV
+  High flux initial 106, goal 107 (ph/pulse/0.1%BW)
- Soft x-rays
*  Tunable ~ 20-1000 eV
Pulse duration 50-200 fs from HGHG, goal 20 fs
*  Variable flux 108-1013 (ph/pulse/0.1%BW)

- Multiple sophisticated short-pulse lasers with temporal and spatial pulse shaping
- 800 nm, < 100 fs oscillator serves as master oscillator
- 267 nm photocathode laser
- 200-150 nm tuneable HGHG seed
*  Multiple tuneable 267-3000 nm experiment initiation

John Corlett, February 2003



—~_ ., LUX s the latest development in LBNL's
zeceec) " history of ultrafast x-ray facilities

|mNI_AN LEY LAB
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\/_ ~ Recirculating linac concept - a refined
Z source for ultrafast x-ray pulses

High brightness RF photocathode gun produces high-quality electron beam
Accelerate in multiple passes through superconducting linac
2.5-3 GeV beam generates x-rays

Compact

Highly stable
superconducting rf

Flexible configuration
- Each pass provides
opportunities for

manipulation of the
electron beam

photon production
+  timing pulses
- Variable repetition rate
- Design is based on existing technologies and
demonstrated physics parameters
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\,./_ Facility provides a wide range of x-ray
\/ wavelengths, operating simultaneously

* Tuneable x-ray beams from undulators

- Soft x-rays

- Seeded high-
gain harmonic-
generation
(HGHG)

- 20-1000 eV

- Spontaneous
emission in
narrow-gap
short-period
insertion devices

Retain possibility for energy
- 1-12 keV recovery by building the final

arc

John Corlett, February 2003



~ Short-pulse hard x-ray scheme conceived
ceee) and developed at LBNL!

Multiple hard x-ray beamlines

R T Deflecting cavities
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Tuneable insertion devices

Beam

dump Flat-beam Injector linac  High-brightness rf

optics A
- e D
photocathode gun
Retain possibility
for energy recovery = =

Main linac

 Generate ~ nC high-brightness bunch in rf photocathode (3 mm-mrad @ 1 nC)
* Produce small vertical emittance from round beam (0.4 mm-mrad in vertical)
- Accelerate 2ps electron bunch to 3 GeV in recirculating linac

* Produce time / angle correlation within bunch .
1A, Zholents et al “Generation of

* Radiate in insertion devicesl subpicosecond x-ray pulses using RF
. . . orbit deflection”, NIM A 425 (1999)
- Compress x-ray pulse from 2 ps to ~ 50 fs in beamline optics 385-389 John Coretr, Febraary 2003



Short-pulse hard x-ray scheme conceived
i and developed at LBNL
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asymmetric-cut crystals
f
¢ .

I

~

i
\
// \\I

Electron trajectory

Radiation from tail electrons Latlice

\v Collimating mirror planes

/ >
Undulator Radiation from head electrons

Input x-ray pulse >> diffraction
limited size and natural beamsize
John Corlett, February 2003
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Hard x-ray pulse duration is determined by the
accelerator parameters and radiation properties

X-ray pulse duration, FWHM (fs)

200

150

100

50

Photon energy (keV)

 The pulse duration is determined by

- Beam emittance for shorter wavelengths

- Optical diffraction for longer wavelengths

* The "flat beam” requirement (small electron beam emittance in one direction)
defines pulse duration for hard x-rays

- Small emittance in direction of head/tail kick

Flat-beam demonstrated at FNPL, LBNL is collaborator in this experiment

John Corlett, February 2003
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Hard x-ray flux from tunable superconducting

108

Flux, ph/pulse/0.1%BW

10¢

- Same flux/pulse as 3rd generation light sources

undulator harmonics

107 |

14 mm period
3 mm gap
2 T field 1
Kmax =2.6
2 m long
3.1GeV
1 nC

2 4 6 8 10 12 14
Photon energy (keV)

- 1000 times shorter pulse

John Corlett, February 2003
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BERKELEY LAB

Source dimensions
390 pym (h) x 20 pym (v)

ey 085, NO.OST— | NBINS~S0.GAUSSFIT-2
0P o5

N

Focus dimensions

48 pm (h) x 55 ym (v)

Hard x-ray undulator beamline

Undulator Collimating mirror hoavﬂmmmow &
Source monochromator
@wll Si(111) Focussing
R M M2
mirror mirror -
M3
mirror

bagin st 6 GNOLOST= 1 NENS-S0.CAISSFTI=2
2oumpsagidot

Endstation

- Conventional optical elements

- Temporal stability will be important

-t Type Coating and |Dimensions| Radius | Incidence | Distance
- R blank (mm) (m) angle(®) from
Source divergence material source (m)
50 prad (h) x 750 prad (v) M1 Plane Pt-coated 650 x 60 1430 89.6 5
parabolic silicon
“ mirror
+ X1, X2 Crystal Silicon 60 x 60 75.6912 6
i —— (111) a=-3.5
JW M2 Plane Pt-coated 300 x 25 1430 89.6 7
parabolic silicon
A mirror
§ 6 M3 Plane Pt-coated 200 x 20 339 89.6 10.667
. elliptical silicon
b e mirror
Focus divergence Endstation 1

500 prad (h) x 300 prad (v)




—~__, High Gain Harmonic Generation (HGHEG)
coveer) " EUV and soft x-ray production

[BERKELEY LAB
- Seed optical pulse modulates a short section of the electron bunch
* Modulated section radiates coherently at a harmonic of the modulation wavelength

+ Developed and demonstrated by L.-H. Yu et al, Brookhaven National Laboratory [1]

Seed optical pulse
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2 ps electron pulse
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Micro orbit-bump (~ 50 ym)
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optical pulse harmonic modulator harmonic
Tounch >> Tio radiator radiator

Pmo >100 Pyyoy

[1]L.-H. Yu et al, "High-Gain Harmonic-Generation Free-Electron Laser”, Science 289 932-934 (2000) John Corlett, February 2003
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— Multiple beamlines with
w 4-stage harmonic booster

- Wide range of soft x-ray wavelengths accessible by tuning seed OPA and
undulators

103-10° times 3rd generation
light sources flux/pulse

1000 times shorter pulse

-------
------
------
-------
------
-------
------
o

TN -
R

4.8 - 6.5 eV seed laser
~ 10!4 photons/pulse

Tuneable seed laser

OPA designed by F. Parmigiani

John Corlett, February 2003
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BERKELEY LAB

50 - 40 nm
Radiator 2 m
M =75cm, B, =11T
300 MW output

256 - 192 nm MO
1000 MW pulse

X

256 - 192 nm
Modulator 3.6 m

12 - 10 nm
Radiator 5 m
Aw =40cm, B, =14T
40 MW output

A = 12 cm, By, = 1.2T

ple 4-stage harmonic cascade

My

225 MW output

4 - 2.5 nm
Radiator 8 m
3.0cm, By =

Aw =

1.27T

1 nm
Radiator 10 m
25cm, B, =06T
14 MW output

A

VIR VAV AL

50 - 40 nm
Modulator 5 m

JLaEiE

12 - 10 nm
Modulator 6 m

VIV VAV AV AV AT ]

4 - 2.5 nm

Modulator 2.8 m

- Conventional undulator designs

John Corlett, February 2003



~ . Sophisticated short-pulse laser systems
\\% are an integral component of the facility
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= Synchronize systems to allow controlled
w delay between pump pulse and x-ray pulse

i:sapphire Master Oscillator

| /
\ RF photodiode E

Photocathode laser

'

RF choto gun T — Rfime— “RF deflection lmuww

e- v Sample

> >—>2k
tasersystem

"Fast” feedback on accelerator systems control pulse-pulse stability

HGHG seed laser

Measured timing error updates feedback systems to compensate “slow” drift

John Corlett, February 2003
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\\% laser for hard x-ray production
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LASER OSCILLATOR | laser pulse

1

(passively modelocked) | |VF

w.onN 7 electron bunch
(RF Kick)~ At < X-rays Timing jitter results in position/angle
| / / jitter of compressed x-ray pulse
Late bunch \
. . .. Synch bunch .
- Electron bunch timing jitter ~ 500 fs S et /r Asymmetrically
Aty buneii Ay, cut crystal

+ Deflecting cavity phase stability ~ 0.01°
- B0 .ﬁm M<30—‘—103mN9._.m03 John Corlett, February 2003
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« ~ 1 ps turn-turn delay
- Allows time for optical pulse manipulation, amplification, and distribution

John Corlett, February 2003



coceer?) : Performance parameters

BERKELEY LAB

Synchronization

-+ Soft x-ray pulses locked to seed laser in HGHG process
- Derive seed laser and sample excitation laser pulses from common oscillator

- Independent of electron bunch timing
Goal 20 fs stability

* Hard x-ray pulses insensitive to electron bunch jitter

- Phase stability of deflecting cavities via feedback
Goal 50 fs stability

-+ Beam-derived optical pulses for ultimate timing stability

Pulse duration

- ¢ 50 fs hard x-rays
Bunch emittance, diffraction limit, deflecting voltage

- EUV and soft x-ray adjustable 50-200 fs initially, goal 20 fs or less

Seed laser, slippage in FEL process

Contd.

John Corlett, February 2003
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|mNI_AN LEY LAB

Wavelength tuning

+ EUV and soft x-ray
- Adjust seed laser, HGHG undulator gaps
- Adjust monochromator

- Hard x-ray
- Adjust superconducting undulator current
- Adjust monochromator

Polarization
+ EUV and soft x-ray

- Circular polarization from helical undulators
Switchable LH, RH

- Hard x-ray
- Linearly polarized

Contd.

John Corlett, February 2003
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BERKELEY LAB

Pulse energy

- Goal 107 photons/pulse hard x-rays
+ Bunch charge, undulator length

- 108 - 10!3 photons/pulse EUV / soft x-rays

+ Bunch charge, seed laser, FEL gain

Flux stability

- High rep-rate results in rapid averaging
* < 10 % shot-shot variation hard x-ray
+ 10-20 % shot-shot variation soft x-ray
* ~0.1% in few seconds at 10 kHz rep. rate

Repetition rate

- Up to 10 kHz for nominal pulse energy

- Higher rates for reduced flux/pulse
- Energy recovery for higher beam power

Contd.

John Corlett, February 2003
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BERKELEY LAB

Coherence
- EUV / soft x-rays spatially and temporally coherent

Power density

- 1013 W/cm? EUV and soft x-ray readily achievable
Seed pulse, bunch charge density

Energy chirp

- Energy chirp of approximately 1% possible for dedicated operating mode

Pass through linac off-crest

John Corlett, February 2003



ceeen Machine feasibility

BERKELEY LAB

- Two year study documented in LBNL publication LBNL-51766

- Physics design optimizied for ultrafast x-ray production with conservative
accelerator physics approach

- 2 ps bunch length, low average current

- Generate 10's fs x-rays from ps bunches, avoids multi-bunch problems, only 30 kW nominal
beam power in final arc

- Recirculating linac configuration is refined, flexible, and upgradeable
- Physics parameters demonstrated or modest extrapolation

- Engineering refinements will be needed in some technologies to improve
reliability and reduce costs

- Design builds on LBNL expertise and experience in accelerator
physics, engineering, and related technologies
- Center for Beam Physics / Accelerator and Fusion Research Division /
Advanced Light Source Division
- ALS, B-factory, LHC, SNS, NLC, Thomson scattering, ALS slicing source

John Corlett, February 2003



eeeen : Machine feasibility study

BERKELEY LAB

- Accelerator physics design has addressed detailed questions

- Space charge, energy spread, bunch compression, coherent synchrotron
radiation, cavity wakefields, resistive wall impedance, magnet errors,
magnet misalignment, instrumentation, rf cavity design, flat-beam
production, x-ray beamline design, laser systems, synchronization

- Engineering effort has developed conceptual designs in key areas, and
confidence in cost estimates

- High rep-rate rf photocathode gun, magnet systems, vacuum systems,
beam dump, linac cryomodule design, cryogenics systems, rf power
systems, conventional facilities

No show-stoppers

John Corlett, February 2003
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- High-brightness high-rep-rate photocathode gun

- Required 3 mm-mrad @ 1 nC demonstrated [1], we
have developed high-power design

Flat-beam production

- <1 mm-mrad demonstrated [2], we are collaborators High-brightness 10 kHz RF

in this experiment

thoda SC TESLA Cavity
to o
LYY N Y Y

o.ﬂu\mnﬁmnm & Slits lEﬂ
s

Ral Beam Fiat Beam
RF Gun w Sclenocids Skew Quad Triplet Trangformer

photocathode gun
- CW superconducting RF | mmesseesavey

- We have developed engineering modifications for the
TESLA design, TINAF upgrade may use 20 MV/m [3] | /[ SoETFETEOD

- Lasers and optical distribution

- We are developing laser expertise at existing
ultrafast experiments (ALS, L'Oasis)

» Superconducting narrow-gap undulators Round beam image on Flat beam image on

- We are developing designs and harmonic correction fluorescent screen fluorescent screen

schemes, Karlsruhe & ACCEL work [4]

[1] J.-P. Carneiro, H. T. Edwards, M. J. Fitch, W. H. Hartung, "Emittance Measurementgs at the AO
Photo-Injector”, Proc. XXth International Linac Conference, Monterey, 2000

[2]1 D. Edwards, et al, "The Flat Beam Experiment at the FNAL Photoinjector", Proc. XXth International
Linac Conference, Monterey, 2000

[3]1L. Harwood, C. Reece, "CEBAF at 12 and 25 GeV", Proc. SRF2001, Tsukuba, Japan, Sept. 2001

[4] A. Geisler et al, "A Superconducting Short Period Undulator”, Proc. PAC2001, Chicago, June 2001

J-Lab upgrade cavity
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Accelerator & conventional facilifies -
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- Contingency @ 40% o
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- Accelerator systems

Experimental: equipment |
- Each HGHG soft X-ray beamline 8
- Each hard X-ray beamline 5
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AOAD

Several potential sites identified
"Old Town" site maximizes synergies with ALS

T
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cecee) LUX - conclusions

BERKELEY LAB

* LUX presents an opportunity for an outstanding dedicated
ultrafast x-ray science facility

- Extremely versatile experimental capabilities

Multiple beamlines for many user groups

Feasible machine design using a refined, flexible, upgradeable,
concept

Technologies demonstrated, engineering refinements needed

Excellent science opportunities across all fields

We are ready to present mission need statement and
start conceptual design

John Corlett, February 2003
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ccceerd] Schedule of project funding

Dollars in millions FY’03 O
Year Year Year Year Year Year | Total

1 2 3 4 5 6 O
Facility cost: L O
0 PED L 15 15 30
0 Construction L 30 100 60 10 200
0 Contingency [ 93
Other project costs L O
0 Conceptual design 3 3
0 R&D 10 10 5 25 -
0 Pre-ops [ 10 20 30 ” o »
Total [ [ [ [ [ Y Mx& o

Initial complement of eight beamlines

Capacity for ~ 20 beamlines

o



R Femtosecond x-ray pulses from picosecond bunches
»ﬂ_y_ ;_\y Reduces problems associated with ultra-short electron

NG| bunches

Deflecting cavity introduces angle-time U 5
correlation into the ~ ps electron 0y( =g 2] g sin(kid)
bunch

%vANV = NMMS \QSE.Q Nwwﬁﬁ MN.SQAQNV

Bunch tilt ~ 140 y-rad (rms)

Radiation opening angle ~ 7 y-rad @ 14

Undulator

Crystal x-ray optics take advantage of

the position-time correlation, or lattice planes -4
angle-time correlation to compress the collimating -
MIFrar
pulse
undulator llkll\lklll\lﬂ, .
source Siz220)

John Corlett, February 2003
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coceer) p X-ray pulse compression

- Optical path length | varies linearly with
position y on crystal

- We propose to use a pair of asymmetrically cut

silicon crystals following collection optics
BN”NB%MNSQ sin a .1._...__..
sin (0 + a)
Crystals o Ay 0 “ Al Lattice
Si(111) 15A | 38mm | 14309° | -35° | 0.6mm (2ps) planes
AY
[T
-

[T
Undulator MIrror

m Qurce John Corlett, February 2003



\/_ ) Tuning x-ray pulse compression as a
function of photon energy

|IBERKELEY LAB]

* Add rotation about axis normal to Bragg planes ¢ to rotation of Bragg angle 6

— Variation of crystal asymmetry a keeping pulse compression fixed

John Corlett, February 2003
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Bend magnet x-ray pulse duration
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Undulator x-ray pulse duration
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BERKELEY LAB

Gun cell Cell2 &3
Frequency 1.3 GHz 1.3 GHz
Rep. rate 10 kHz 10 kHz
Dty Factor ~5% ~5%
E. 64 MYVim 43 MVim
P 581 kW 1550 kW
Prvcrage G kW T1.5kW
P 10 Ve 07 Wica? Surface electric and magnetic fields
iens mas

o b La. 04 I, c43

di. Ml S
48001

Temperature above cooling water

L2. 492 24.124 16. 122

John Corlett, February 2003
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BERKELEY LAB

A

Flat beam modeling with

PARMELA, MAFTIA, HOMDYN, ASTRA

Space Charge Off
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Analytical model

- Characterize circular beam in circular modes
*  Uncorrelated (anti-clockwise) mode
+  Correlated (clockwise) mode

- Transform to x - y modes
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* 1.3 and 3.9 GHz systems

- Accelerating structures

- Linearizing cavity
- Deflecting cavities

* Cavity thermal management
- Conduction through He bath increased
- J-Lab upgrade plan to develop 20 MV/m

CW superconducting RF

Cold Mass Support

0.025 bar, 2 K He Gas Return Pipe

40 K Gas Forward

100 mm Dia. Cavity
Feed Pipe

Vacuum Vessel

2K Two-Phase, 1.9 K He
Header Pipe >100 mm Dia

Electron Beam Pipe

Ti Cavity He Tank, which
is 15 mm larger than the
TESLA cavity tank

John Corlett, February 2003



ceecend] : Deflecting cavity RF control

[BERKELEY LAS]
»  Control cavity phase and amplitude to minimize timing jitter
- "Fast” feedback
- Update setpoint from measured timing drift

Bl MHz

s1gnal Processing
handpass

1Jy L [T i
20 MHz IEF, 50 M5/s d&amp.

=3l MHz

bandpass
laser cecillator s1gnal

Aramp

3820 GHz

handpass

famp.
Klystron

wilocal feedback

A\ A AT - Electronics

- Resolution of 10 fs at 3.9 GHz
- 2.44x10-% prad

- 14-bit ADC at 80 MHz

-

John Corlett, February 2003
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BERKELEY LAB
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Cryogenics systems

~1550 g/s @ 18 bar, 300 K
~1320 g/s @@ 1.4 bar, 295 K

-

-
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Three Stage Screw Compressor System with
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0.4 bar, 295 K
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ceecend] : Delay lines and path lengths

|mNI_AN LEY LAB

Need flexible delay to match the path length of the laser pulse and the x-ray pulse at each
beamline endstation

Optical delay kept to minimum to preserve stability
Master oscillator is extremely stable delay

- Beamline users can select any pulse from the 81.25 MHz train of pulses
- 12.3 ns pulse separation

Stability over time period of the required delay

- ~ 10 ps

- 10 ps corresponds to ~ 812 round-trips in the master oscillator

- For timing accuracy of 30 fs, the path length variation in this time must not exceed 10 ym
+ 0.012 ym per round-trip

- 12nmmin 12.3 ns
- x1ms!

- Requires force beyond that generated from acoustic disturbances or piezoelectric transducer
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BERKELEY LAB

Coherent synchrotron radiation

A

Frrereer 75

Coherent synchrotron radiation

- Electrons radiate coherently for A>2=1, .,

*  Analytical model

- Traffic4 calculatio
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Energy loss along bunch following 180° bend. 120
MeV nominal energy, 7mm aperture in dipoles.
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= 4nm and 1nm output power sensitivity to
w input electron beam parameters

Base parameters:
Beam Current Sensitivity Beam Emittance Sensitivity
moo >3vm 2.5e+@7 1.6e+@7

200 keV uniform dE e —— | e R

2.0 mm-mrad s " | e 1

1.0 GW input P @240 nm . © eevas | |

4-stage harmonic cascade  © | 1 e ol H

Time-steady simulations T m | seves | ]
Nominal output: ot P P

me ;s @ A. nm Current (A Norm. Emittance C(mm—mrad)
11 MW @ 1 nm Note: 4-nm power scaled down 10X to fit on plots!

Beam Energy Spread Sensitivity Beam Energy Sensitivity Input 24@-nm Laser Power Sensitivity
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Delta GammalkeV> Relative Energy Offset Input Power
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